Open Access Research

Twentieth century carbon stock changes related to Piñon-Juniper expansion into a black sagebrush community

Daniel P Fernandez1*, Jason C Neff1, Cho-ying Huang2, Gregory P Asner3 and Nichole N Barger4

Author Affiliations

1 Department of Geological Sciences and Department of Environmental Studies, University of Colorado, 2200 Colorado Avenue, Boulder, CO 80309, USA

2 Department of Geography, National Taiwan University, Taipei 10617, Taiwan

3 Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA

4 Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA

For all author emails, please log on.

Carbon Balance and Management 2013, 8:8  doi:10.1186/1750-0680-8-8

Published: 5 September 2013

Abstract

Background

Increases in the spatial extent and density of woody plants relative to herbaceous species have been observed across many ecosystems. These changes can have large effects on ecosystem carbon stocks and therefore are of interest for regional and national carbon inventories and for potential carbon sequestration or management activities. However, it is challenging to estimate the effect of woody plant encroachment on carbon because aboveground carbon stocks are very heterogeneous spatially and belowground carbon stocks exhibit complex and variable responses to changing plant cover. As a result, estimates of carbon stock changes with woody plant cover remain highly uncertain. In this study, we use a combination of plot- and remote sensing-based techniques to estimate the carbon impacts of piñon and juniper (PJ) encroachment in SE Utah across a variety of spatial scales with a specific focus on the role of spatial heterogeneity in carbon estimates.

Results

At a plot scale (300 m2) areas piñon juniper (PJ) encroached areas had 0.26 kg C m-2 less understory vegetation carbon compared to un-encroached sites. This lower amount of carbon was offset by an average of 1.82 kg C m-2 higher carbon in PJ vegetation and 0.50 kg m-2 of C in PJ surface-litter carbon. Soil mineral carbon stocks were unaffected by woody plant cover and density. Aboveground carbon stocks were highly dependent on PJ vegetation density. At a 300 m2 plot-scale, plots with low and high density of PJ forest had 1.40 kg C m-2 and 3.69 kg m-2 more carbon than the un-encroached plot. To examine how these 300 m2 variations influence landscape scale C estimates, historical and contemporary aerial photos were analyzed to develop forest density maps in order to estimate above ground PJ associated C stock changes in a 25 ha area. This technique yielded an average estimate of 1.43 kg m-2 of C accumulation with PJ encroachment. Combining this estimate with analysis of tree growth increments from dendrochronologies, we estimate that these PJ stands are accumulating aboveground C at an annual rate of 0.02 kg C m-2 with no slowing of this rate in healthy PJ. This result is in contrast to what has been observed in large areas of drought related PJ mortality, where C accumulation has ceased.

Conclusions

These results illustrate that the encroachment of PJ forests in SE Utah over the last century has resulted in a large (and ongoing) accumulation of carbon in PJ trees and surface litter. However, the magnitude of the increase depends to on the density of vegetation across the landscape and the health of forest stands. Both management activities that remove forest carbon and forest mortality due to drought or wildfire have the potential to quickly reverse the multi-decadal accumulation of carbon in these stands.